文 | 张立钧 编辑| 姚顺意
来源 | 《2018年中国金融科技调查报告》财资一家(TreasuryChina)微信公众号首发,转载注明来源。
大数据:应用仍集中于前端业务层面
案例分享:同盾科技大数据风控
人工智能:应用的基础条件有待改善
案例分享:平安金融壹帐通人工智能定损与风控
▲图 应用人工智能的挑战
在数据方面,数据质量和数据打通问题最为严重。这也是金融行业在数据集中之前各业务板块、条线各自独立发展,缺少统一规划统筹的后果。目前,从业机构正通过建立数据统筹机制、整合结构化和非结构化数据、打造大数据平台等方式对数据进行全面整合,为今后数据全面应用夯实基础。
在团队方面,从业机构在科技人才上的竞争尤为激烈。以BATJ为首的科技巨头,在薪资待遇、技术储备、场景应用上优于传统金融机构,导致后者的人工智能团队储备捉襟见肘。随着高校及培训机构不断产出科技人才及开源技术的发展,人工智能的门槛将越来越低,团队的压力将有所降低。
在技术方面,传统金融机构对于目前比较新颖的分布式计算、机器学习类和深度学习类基础平台的掌握与运用依然比较欠缺。但在这方面,市场上有发展比较成熟的供应商,可提供完整的解决方案与定制开发,因此传统金融机构可通过购买这些产品与服务,在短期内获得较大的技术提升。
在场景方面,发展人工智能面临的挑战主要集中在前台。前台部门与客户交互较多,运用金融科技对业绩的提升有立竿见影的效果。因此,传统金融机构在前台场景的竞争十分激烈。如何进一步提升精准营销的有效性、降低从业机构的获客成本,将是金融科技下一步场景运用所的焦点。
在机制方面,大部分受访机构目前还没有为人工智能团队设置单独的流程规范和考核机制,任其自然发展。相信随着人工智能技术在企业中战略地位的提升、科技应用场景的增加和科技团队人员的扩充,从业机构对人工智能团队的管理将有所转变,从“粗放型”向规范化的模式发展。
评论 (0)